
Extended DCG notation:
A Tool for Applicative Programming in Prolog

Peter Van Roy
vanroy@ernie .berkeley.edu

Computer Science Division
University of California

Berkeley, CA 94720

ABSTRACT

This report describes a preprocessor that simplifies purely applicative

programming in Prolog. The preprocessor generalizes Prolog's Definite

Oause Grammar (DCG) notation to allow programming with multiple

accumulators. It has been an indispensable tool in the development of an

optimizing Pro log compiler. Its use is transparent in versions of Prolog that

conform to the Edinburgh standard. This report contains a description of

the preprocessor, a user manual, a large example program, and the source

code of the preprocessor. This information is also available by anonymous

ftp to arpa.berkeley.edu.

July 24, 1990

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
24 JUL 1990 2. REPORT TYPE

3. DATES COVERED
 00-00-1990 to 00-00-1990

4. TITLE AND SUBTITLE
Extended DCG Notation: A Tool for Applicative Programming in Prolog

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This report describes a preprocessor that simplifies purely applicative programming in Prolog. The
preprocessor generalizes Prolog’s Definite Clause Grammar (DCG) notation to allow programming with
multiple accumulators. It has been an indispensable tool in the development of an optimizing Prolog
compiler. Its use is transparent in versions of Prolog that conform to the Edinburgh standard. This report
contains a description of the preprocessor, a user manual, a large example program, and the source code of
the preprocessor.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

22

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1. Introduction

Extended DCG notation:
A Tool for Applicative Programming in Prolog

Peter Van Roy
vanroy@ernie .berkeley.edu

Computer Science Division
University of California

Berkeley, CA 94720

It is desirable to program in a purely applicative style, i.e. within the pure logical
subset of Prolog. In that case a predicate's meaning depends only on its definition. and not
on any outside information. This has two important advantages. First, it greatly simplifies
verifying correcmess. Simple inspection is often sufficient. Second, since all information
is passed locally, it makes the program more amenable to parallel execution. However, in
practice the number of arguments of predicates written in this style is large, which makes
writing and maintaining them difficult. Two ways of getting around this problem are (1) to
encapsulate information in compound structures which are passed in single arguments, and
(2) to use global instead of local information. Both of these techniques are commonly used
in imperative languages such as C, but neither is a satisfying way to program in Prolog, for
the following reasons:

• Because Prolog is a single-assignment language, modifying encapsulated information
requires a time-consuming copy of the entire structure. Sophisticated optimizations
could make this efficient, but compilers implementing them do not yet exist

• Using global information destroys the advantages of programming in an applicative
style, such as the ease of mathematical analysis and the suitability for parallel execu
tion.

A third approach with neither of the above disadvantages is extending Prolog to allow an
arbitrary number of arguments without increasing the size of the source code. The
extended Prolog is translated into standard Prolog by a preprocessor. This repon describes
an extension to Prolog's Definite Cause Grammar notation that implements this idea.

2. Definite Clause Grammar (DCG) notation

DCG notation was developed as the result of research in natural language parsing and
understanding [Pereira & Warren 1980]. It allows the specification of a class of attributed
unification grammars with semantic actions. These grammars are strictly more powerful
than context-free grammars. Prologs that conform to the Edinburgh standard [Qocksin &
Mellish 1981] provide a built-in preprocessor that translates clauses written in DCG nota
tion into standard Prolog.

An imponant Prolog programming technique is the accumulator [Sterling & Shapiro
1986]. The DCG notation implements a single implicit accumulator. For example, the
DCG clause:

term(S) --> tactor(A), [+], factor(B), {Sis A+B}.

is translated internally into the Prolog clause:

-2-

term(S,X1,X4) :- factor(A,X1,X2), X2•[+1X3], factor(B,X3,X4), Sis A+B.

Each predicate is given two additional arguments. Chaining together these arguments
implements the accumulator.

3. Extending the DCG notation

The DCG notation is a concise and clear way to express the use of a single accumula
tor. However, in the development of large Prolog programs I have found it useful to carry
more than one accumulator. If written explicitly, each accumulator requires two additional
arguments, and these arguments must be chained together. This requires the invention of
many arbitrary variable names, and the chance of introducing errors is large. Modifying or
extending this code, for example to add another accumulator, is tedious.

One way to solve this problem is to extend the DCG notation. The extension
described here allows for an unlimited number of named accumulators, and handles all the
tedium of parameter passing. Each accumulator requires a single Prolog fact as its declara
tion. The bulk of the program source does not depend on the number of accumulators, so
maintaining and extending it is simplified. For single accumulators the notation defaults to
the standard DCG notation.

Other extensions to the DCG notation have been proposed, for example Extraposition
Grammars [Pereira 1981] and Definite Clause Translation Grammars [Abramson 1984].
The motivation for these extensions is natural-language analysis, and they are not directly
useful as aids in program construction.

4. An example

To illustrate the extended notation, consider the following Prolog predicate which
converts infix expressions containing identifiers, integers, and addition (+) into machine
code for a simple stack machine, and also calculates the size of the code:

expr_code(A+B, Sl, S4, Cl, C4) :
expr_code(A, Sl, S2, Cl, C2),
expr_code(B, S2, S3, C2, C3),
C3•[plusiC4], /*Explicitly accumulate 'plus' */
S4 is 53+1. I* Explicitly add 1 to the size */

expr_code(I, Sl, S2, Cl, C2) :
atomic(I),
Cl•[push(I) IC2],
S2 is Sl+1.

This predicate has two accumulators: the machine code and its size. A sample call is
expr_code (a+3+b, 0, Size, Code, []),which returns the result:

Size - 5
Code- [push(a),push(3),plus,push(b),plus]

With DCG notation it is possible to hide the code accumulator, although the size is still
calculated explicitly:

expr_code(A+B, 51, 54) -->
expr_code(A, 51, 52),
expr_code(B, 52, 53),

- 3 -

(plus], /*Accumulate 'plus' in a hidden accumulator*/

{54 is 53+1}. /*Explicitly add 1 to the size*/

expr_code(I, 51, 52) -->
{atomic (I)},
(push (I)),
{52 is 51+1}.

The extended notation hides both accumulators:

expr_code(A+B) -->>
expr_code (A),
expr_code (B),
(plus) :code, /* Accumulate 'plus' in the code accumulator */

(1) :size. /*Accumulate 1 in the size accumulator*/

expr_code(I) -->>
{atomic (I)},
(push (I)): code,
(1]:size.

The translation of this version is identical to the original definition. The preprocessor

needs the following declarations:

acc_info(code, T, OUt, In, (Out•[TIIn]))./* Accumulator declarations*/

acc_info(size, T, In, OUt, (Out is In+T)).

pred_info(expr_code, 1, (size,code]). /* Predicate declaration */

For each accumulator this declares the accumulating function, and for each predicate this

declares the name, arity (number of arguments), and accumulators it uses. The order of the

In and out arguments determines whether accumulation proceeds in the forward direc

tion (see size) or in the reverse direction (see code). Choosing the proper direction is

important if the accumulating function requires some of its arguments to be instantiated.

5. Concluding remarks

An extension to Prolog's DCG notation that implements an unlimited number of

named accumulators was developed to simplify purely applicative Prolog programming. A

preprocessor for C-Prolog and Quintus Prolog is available by anonymous ftp to

arpa.berkeley.edu or by contacting the author. Comments and suggestions for improve

ments are welcome.

This research was partially sponsored by the Defense Advanced Research Projects

Agency (DoD) and monitored by Space & Naval Warfare Systems Command under Con

tract No. N00014-88-K-0579.

6. References

[Abramson 1984]

H. Abramson, "Definite Clause Translation Grammars," Proc. 1984 International

Symposiwn on Logic Programming, 1984, pp 233-240.

[Clocksin & Mellish 1981]

W.F. Clocksin and C.S. Mellish, "Programming in Prolog," Springer-Verlag, 1981.

[Pereira 1981]

-4-

F. Pereira, ''Extraposition Grammars,'' American Journal of Computational Linguis
tics, 1981, vol. 7, no. 4, pp 243-255.

[Pereira & Warren 1980]

F. Pereira and D.H.D. Warren, "Definite Clause Grammars for Language
Analysis-A Survey of the Formalism and a Comparison with Augmented Transition
Networks," Journal of Artificial Intelligence, 1980, vol. 13, no. 3, pp 231-278.

[Sterling & Shapiro 1986]

L. Sterling and E. Shapiro, "The Art ofProlog," MIT Press, 1986.

Extended DCG notation:
A Tool for Applicative Programming in Prolog

1. Introduction

User Manual

Peter Van Roy
vanroy@ernie .berkeley .edu

Computer Science Division

University of California

Berkeley, CA 94 720

This manual describes a preprocessor for Prolog that adds an arbitrary number of

arguments to a predicate without increasing the size of the source code. The hidden argu

ments are of two kinds:

(1) Accumulators, useful for results that are calculated incrementally in many predicates.

An accumulator expands into two additional arguments per predicate.

(2) Passed arguments, used to pass global information to many predicates. A passed

argument expands into a single additional argument per predicate.

The preprocessor has been tested under C-Prolog and Quintus Prolog. It is being used by

the author in program development, and is believed to be relatively bug-free. However, it

is still being refined and extended. The most recent version is available by anonymous ftp

to arpa.berkeley.edu or by contacting the author. Please let me know if you find any bugs.

Comments and suggestions for improvements are welcome.

2. Using the preprocessor
The preprocessor is implemented in the file accumulator. pl. It must be con

sulted or compiled before the programs that use it. In Prologs that conform to the Edin

burgh standard, such as C-Prolog or Quintus Prolog, the user-defined predicate

term_expansion/2 is called when consulting or compiling each clause that is read.

With this hook the use of the preprocessor is transparent.

Oauses to be expanded are of the form (Head-->>Body) where Head and

Body are the head and body of the clause. The head is always expanded with all of its

hidden arguments. Table 1 summarizes the expansion rules for body goals. In the table,

Goal denotes any goal in a clause body, Ace denotes an accumulator, Pass denotes a

passed argument, and Arg denotes either an accumulator or a passed argument Hidden

arguments of body goals that are not in the head have default values which can be overrid

den. For compatibility with DCG notation the accumulator dcg is available by default.

If-then-else is not handled in this version.

The preprocessor assumes the existence of a database of information about the hid

den parameters and the predicates to be expanded. Three relations are recognized: a

declaration for each predicate, each accumulator, and each passed argument. These rela

tions can be put at the beginning of each file (in which case their scope is the file) or stored

-2-

Table 1 - Expansion rules for the preprocessor
Body goal Action

{Goal} Don't expand any hidden arguments of Goal.
Goal Expand all of the hidden parameters of Goal that are also

in the head. Those hidden parameters not in the head are
given default values.

Goal:L If Goal has no hidden arguments then force the expansion
of all arguments in L in the order given. If Goal has hid-
den arguments then expand all of them, using the contents of
L to override the expansion. L is either a term of the form
Ace, Ace (Left,Right), Pass, Pass (Value), or a
list of such terms. When present, the arguments Left,
Right, and Value override the default values of argu-
ments not in the head.

List:Acc Accumulate a list of terms in the accumulator Ace.
List Accumulate a list of terms in the accumulator dcg.
X/Arg Unify x with the left term for the accumulator or passed ar-

gument Arg.
Acc/X Unify X with the right term for accumulator Ace.

X/Acc/Y Unify X with the left and Y with the right term for the ac-
cumulator Ace.

insert(X,Y) :Ace Insert the arguments X and Y into the chain implementing
the accumulator Ace. This is useful when the value of the
accumulator changes radically because X and Y may be the
arguments of an arbitrary relation.

insert(X,Y) Insert the arguments X and Y into the chain implementing
the accumulator dcg . This inserts the difference list X-Y
into the accumulated list

in a separate file that is consulted first (in which case their scope is the whole program).

A short example gives a flavor of what the preprocessor does:

% Declare the accumulator 'castor':
acc_info(castor, _, _, _, true).

% Declare the passed argument 'pollux':
pass_info(pollux).

% Declare three predicates using these hidden arguments:
pred_info (p, 1, [castor,pollux]).
pred_info(q, 1, [castor,pollux]).
pred_info (r, 1, [castor, pollux]).

% The program:
p(X) -->> Y is X+1, q(Y), r(Y).

This example declares one accumulator, one passed argument, and three predicates using
them. The program consists of a single clause. The preprocessor is used as follows:
(bold-face denotes user input)

% cprolog

- 3 -

C-Prolog version 1.5
1 ?- ['accumulator.pl'].
accurnulator.pl consulted 9780 bytes 1.7 sec.

yes
I ?- ['example.pl'].
example.pl consulted 668 bytes 0.25 sec.

yes
I ?-

Now the predicate p (X) has been expanded. We can see what it looks like with the
listing command:

I ?- listing(p).

p(X, 51, 53, P) :- Y is X+1, q(Y, 51, 52, P), r(Y, 52, 53, P).

(Variable names have been changed for clarity.) The arguments Sl, S2, and S3, which
implement the accumulator castor, are chained together. The argument P implements
the passed argument It is added as an extra argument to each predicate.

In object-oriented terminology the declarations of hidden parameters correspond to
classes with a single method defined for each. Declarations of predicates specify the inher
itance of the predicate from multiple classes, namely each hidden parameter.

3. Declarations

3.1. Declaration of the predicates

Predicates are declared with facts of the following form:

pred_info(Name, Arity, List)

The predicate Name/Arity has the hidden parameters given in List. The parameters
are added in the order given by List and their names must be atoms.

3.2. Declaration of the accumulators

Accumulators are declared with facts in one of two forms. The short form is:

acc_info(Acc, Term, Left, Right, Joiner)

The long form is:

acc_info(Acc, Term, Left, Right, Joiner, L5tart, R5tart)

In most cases the short form gives sufficient information. It declares the accumulator
Ace, which must be an atom, along with the accumulating function, Joiner, and its
arguments Term, the term to be accumulated, and Left & Right, the variables used
in chaining.

The long form of acc_info is useful in more complex programs. It contains two
additional arguments, LStart and RStart, that are used to give default starting
values for an accumulator occurring in a body goal that does not occur in the head. The
starting values are given to the unused accumulator to ensure that it will execute correctly
even though its value is not used. Care is needed to give correct values for LStart and
RStart. For DCG-like list accumulation both may remain unbound.

-4-

Two conventions are used for the two variables used in chaining depending on which
direction the accumulation is done. For forward accumulation, Left is the input and
Right is the output. For reverse accumulation, Right is the input and Left is the
output.

To see how these declarations work, consider the following program:

% Example illustrating the difference between
% forward and reverse accumulation:

% Declare the accumulators:
acc_info(fwd, T, In, Out, Out=[TIIn]).
acc_info(rev, T, Out, In, Out•[TIIn]).

% Declare the predicates using them:
pred_info (flist, 1, [fwd]).
pred_info (rlist, 1, [rev]) .

% Forward accumulator.
% Reverse accumulator.

% flist(N, [], List) creates the list [1, 2, ... , N]

flist(O) -->> [].
flist(N) -->> N>O, [N] :fwd, N1 is N-1, flist(N1).

% rlist (N, List, []) creates the list [N, ... , 2, 1]

rlist(O) -->> [].
rlist(N) -->> N>O, [N] :rev, N1 is N-1, rlist(N1).

This defines two accumulators fwd and rev that both accumulate lists, but in different
directions. The joiner of both accumulators is the unification Out- [T 1 In], which adds
T to the head of the list In and creates the list Out. In accumulator fwd the output
Out is the left argument and the input In is the right argument This builds the list in
ascending order. Switching the arguments, as in the accumulator rev, builds the list in
reverse. A sample execution gives these results:

I '?- flist(10, [], List).

List= [1,2,3,4,5,6,7,8,9,10]

yes
I '?- rlist (10, List, []).

List- [10,9,8,7,6,5,4,3,2,1]

yes
I '?-

If the joining function is not reversible then the accumulator can only be used in one direc
tion. For example, the accumulator add with declaration:

acc_info(add, I, In, Out, Out is I+In).

It can only be used as a forward accumulator. Attempting to use it in reverse results in an
error because the argument In of the joiner is uninstantiated. The reason for this is that
the predicate is I 2 is not pure logic: it requires the expression in its right-hand side to be
ground.

- 5 -

3.3. Declaration of the passed arguments

Passed arguments are declared as facts in one of two fonns. The short fonn is:

pass_info(Pass)

The long fonn is:

pass_info(Pass, PStart)

In most cases the short fonn is sufficient. It declares a passed argument Pass, that must

be an atom. The long fonn also contains the starting value PStart that is used to give a

default value for a passed argument in a body goal that does not occur in the head. Most of

the time this situation does not occur.

4. Tips and techniques
Usually there will be one clause of pred_info for each predicate in the program.

If the program becomes very large, the number of clauses of pred _info grows accord

ingly and can become difficult to keep consistent. In that case it is useful to remember that

a single pred_info clause can summarize many facts. For example, the following

declaration:

pred_info(_, , List).

gives all predicates the hidden parameters in List. This keeps programming simple

regardless of the number of hidden parameters.

5. Acknowledgements
This research was partially sponsored by the Defense Advanced Research Projects

Agency (DoD) and monitored by Space & Naval Warfare Systems Command under Con

tract No. N00014-88-K-0579.

6. References
[Abramson 1984]

H. Abramson, "Definite Clause Translation Grammars," Proc. 1984 International

Symposium on Logic Programming, 1984, pp 233-240.

[Clocksin & Mellish 1981]

W.F. Clocksin and C.S. Mellish, "Programming in Prolog," Springer-Verlag, 1981.

[O'Keefe 1988]

R. A. O'Keefe, "Practical Prolog for Real Programmers," Tutorial 8, Fifth Interna

tional Conference Symposium on Logic Programming, Aug.l988.

[Pereira 1981]

F. Pereira, "Extraposition Grammars," American Journal of Computational Linguis

tics, 1981, vol. 7, no. 4, pp 243-255.

[Pereira & Shieber 1987]

F. Pereira and S. Shieber, "Prolog and Natural-Language Analysis," CSU Lecture

Notes, 1987, no. 10.

[Pereira & Warren 1980]

F. Pereira and D.H.D. Warren, "Definite Clause Grammars for Language

Analysis-A Survey of the Fonnalism and a Comparison with Augmented Transition

- 6 -

Networks," Journal of Artificial Intelligence, 1980, vol. 13, no. 3, pp 231-278.

[Sterling & Shapiro 1986]

L. Sterling and E. Shapiro, "The Art ofProlog," MIT Press, 1986.

•

An example using the extended DCG preprocessor

%%

% Copyright (C) 1989 Regents of the University of California.

% All rights reserved. This program may be freely used and modified for

% non-commercial purposes provided this copyright notice is kept unchanged.

% Written by Peter Van Roy
%%

% The compilation of unification into a low-level intermediate language.

% For an explanation of what this program does see "An Intermediate Language

% to Support Prolog's Unification", Proceedings of the 1989 North American

% Conference on Logic Programming, MIT Press, vol. 2, pp. 1148-1164.

% Some sample executions:
% ?- u(X, a, [X]' Out).
% ?- u (X, [Y,Z], [X,Y,Z], Out).
% ?- u(X, t(1,2,s(3)), [], Out).

%%

% Declarations:

% Accumulators:
ace info(code, - T, Out, In, (Out=[TIIn])). % Generated code.

acc_info(vars, v, In, Out, incl(V,In,Out)). % Set of initialized variables.

ace info(offset, I, In, Out, (Out is I+In)). % Offset into writemode term. -
acc_info(size, I, In, Out, (Out is I+In)). % Size of a term.

% Predicates:
pred_info(u, 2, vars]) .

pred_info(init_var, 3, code]).

pred_info(Name, Arity, vars,code]) ·- member(Name/Arity,

[unify/2, uninit/2, init/4, unify_var/2, unify_block/4, make_slots/5,

unify_writemode/4, unify_readmode/3, unify_args/6, unify_arg/6]).

pred_info(block, 2, [offset,vars,code]).

pred_info(block_args, 5, [offset,vars,code]).

pred_info (size, 1, [size]) .
pred_info (size_args, 3, [size]) .

member (X, [X I_]) .
member (X, [I L]) member (X, L) .

%%

% u(X, T, In, Out)
% Unify variable X with term T and write the result:

u(X, T) -->> unify(X, T):code(Code,[]), write_code(Code, 4).

% unify(X, T, In, Out, Code, Link)

% Unify the variable X with the term T, given the set In of

% variables initialized before the unification.

% Return the intermediate code generated in the accumulator 'code'

- 2-

% and the set Out of variables initialized after the unification.
unify (X, T) -->> In/vars, \+in (X, In), ! , uninit (X, T) .
unify(X, T) -->> In/vars, in(X, In), !, init(X, T, nonlast,

%**** Uninit assumes X has not yet been initialized:
uninit (X, T) -->> compound (T), ! , [move (Tag·h, X)] :code,

ter.mtag(T, Tag), unify_block(nonlast, T, _, _), [X] :vars.
uninit(X, T) -->> atomic(T), !, [move(tatm·T, X)]:code, (X]:vars.
uninit (X, T) -->> var (T), ! , unify_var (X, T) .

%**** Init assumes X has already been initialized:
init(X, T, Last, LLbls) -->> nonvar(T), !,

ter.mtag (T, Tag) ,
[de ref (X), switch (Tag, X, [trail (X) 1 Write], Read, fail)] :code,
insert(In,Out) :vars,
{unify_writemode(X, T, Last,
{unify_readmode(X, T, LLbls,

init(X, T, _, _) -->> var(T),

LLbls, In, , Write,
In, Out, Read, [])}.
!, unify_var(X, T).

%**** Unifying two variables together:
unify_var(X, Y) -->> In/vars, in(X, In), in(Y, In),
unify_var(X, Y) -->> In/vars, in(X, In), \+in(Y, In),

[Y] :vars.
unify_var(X, Y) -->> In/vars, \+in(X, In), in(Y, In),

[X] :vars.

I . ,
I . ,

I . ,

[]) } ,

[unify(X,Y,fail)] :code.
[move(X,Y)] :code,

[move(Y,X)] :code,

unify_var(X, Y) -->> In/vars, \+in(X, In), \+in(Y, In), !,
[move(tvar·h,X), move(tvar·h,Y), add(1,h), move(Y, [h-1])] :code,
[X,Y] :vars.

%**** Unify_readmode assumes X is a dereferenced nonvariable
% at run-time and T is a nonvariable at compile-time.
unify_readmode(X, T, LLbls) -->> structure(T), !,

functor (T, F, N), [equal ([X], tatm· (F /N), fail)] :code,
unify_args(1, N, T, 0, X, LLbls).

unify_readmode(X, T, LLbls) -->> cons(T), !,
unify_args(1, 2, T, -1, X, LLbls).

unify_readmode(X, T, _l -->> atomic(T), !,
[equal(X,tatm·T,fail)] :code.

unify_args(I, N, _, _, _, _) -->> I>N, !.
unify_args(I, N, T, D, X, [_ILLbls]) -->>I-N, !,

unify_arg(I, T, D, X, last, LLbls).
unify_args (I, N, T, D, X, LLbls) -->> I<N, ! ,

unify_arg(I, T, D, X, nonlast,) ,
I1 is I+l, unify_args(I1, N, T, D, X, LLbls).

unify_arg(I, T, D, X, Last, LLbls) -->>
[move([X+ID],Y)] :code,
ID is I+D, arg(I, T, A),
[Y] :vars,
init(Y, A, Last, LLbls).

%**** Unify_writemode assumes X is a dereferenced unbound
% variable at run-time and T is a nonvariable at compile-time.

•

- 3-

unify_writemode(X, T, Last, LLbls) -->> compound(T),
[move(Tag~h, [X))] :code,
terrntag(T, Tag),
unify_block(Last, T, _, LLbls).

unify_writemode(X, T, _, _) -->> atomic(T), ' . ,
[move(tatm~T, [X])) :code.

' . ,

%**** Generate a minimal sequence of moves to create T on the heap:
unify_block(last, T, Size, [Lbll]) -->> !,

size(T) :size(O,Size),
[add(Size,h),jurnp(Lbl)] :code.

unify_block(nonlast, T, Size, [_ILLbls]) -->> !,
size (T) :size (0, Size), Offset is -Size,
[add(Size,h)] :code,
block(T, LLbls) :offset(Offset,O).

block(T, LLbls) -->> structure(T), !, D/offset,
[move (tatm~ (F/N), [h+D])] :code,
functor(T, F, N),
[N] :offset, [1] :offset,
Dl is D+l,
make_slots(l, N, T, Dl, Offsets),
block_args(l, N, T, Offsets, LLbls)

block(T, LLbls) -->> cons(T), !, D/offset,
[2] :offset,
make_slots(l, 2, T, D, Offsets),
block_args(l, 2, T, Offsets, LLbls).

block (T, []) -->> atomic (T), ! .
block (T, []) -->> var (T), ! .

block_args (I, N, _, [], []) -->> I>N, ! .

block_args (I, N, T, [D), [Lbll LLbls]) -->> I=N, ! , D/offset,
[label(Lbl)] :code,
arg(I, T, A), block(A, LLbls).

block_args (I, N, T, [D !Offsets], LLbls) -->> I<N, ! , D/offset,
arg(I, T, A), block(A, _), Il is I+l,
block_args(Il, N, T, Offsets, LLbls).

make_slots(I, N, [)) -->> I>N, ! .

make_slots (I, N, T, D, [Off 1 Offsets]) -->> I=<N,
arg(I, T, A),
In/vars, init_var(A, D, In),
rnake_word(A, Off, Word),
[move(Word, [h+D))] :code,
[A] :vars,
Dl is D+l, Il is I+l,
make_slots(Il, N, T, Dl, Offsets) .

% Initialize first-time variables in write mode:
init _var(V, I, In) -->> var (V), \+in(V, In), I . ,
init _var(V, _, In) -->> var (V), in(V, In), ! .
init _var(V, _, -) -->> nonvar (V), ! .

' . ,

[move(tvar~(h+I),V)] :code.

make_word(C, Off, Tag~(h+Off)) ·- compound(C), !, terrntag(C, Tag).

make_word(V,
make_word(A,

- 4-

·- var (V) , ! .
·- atomic (A) , ! .

% Calculate the size of T on the heap:

size(T) -->> structure(T), !,
functor(T, _, N), [l):size, [N):size, size_args(l, N, T).

size (T) -->> cons (T) , ! ,
[2] :size, size_args(l, 2, T)

size (T) -->> atomic (T), ! .

size (T) -->> var (T), ! .

size_args(I, N, _) -->> I>N,

size_args(I, N, T) -->> I=<N,
! .
I
• I

arg(I, T, A), size(A), Il is I+l, size_args (Il, N, T).

%**** Utility routines:

in(A, [BIS]) ·- compare(Order, A, B), in_2(0rder, A, S).

in 2 (-, I) . -
in 2 (>, A, S) ·- in(A, S). -
incl (A, Sl, Sl var (A), I incl 2(51, A, S) .

• I -
incl(A, s, S) ·- nonvar (A).

incl_2 ([], A, [A] l.
incl_2([BIS1], A, S) :- compare(Order, A, B), incl_3(0rder, A, B, Sl, S).

incl_3(<, A, B, Sl, [A,BISl]).

incl 3(-, I B, Sl, [B I Sl]). - -
incl_3(>, A, B, Sl, [B IS] l ·- incl 2 (Sl, A, S). -

compound (X) ·- nonvar(X), \+atomic (X) .

cons(X) ·- compound (X) , X ... [I] .
structure(X) ·- compound(X), \+X=[_I_] .

termtag(T, tstr) ·- structure (T) .

termtag (T, tlst) ·- cons (T) .

termtag (T, tatm) ·- atomic (T).

termtag (T, tvar) ·- var(T).

write_ code ([], _) .
write_code([IIL], N) :- write_code(I, L, N).

write_code(switch(Tag,V,Wbr,Rbr,Fail), L, N) :- !, Nl is N+4,

tab(N), write('switch('), write(V), write(') {'), nl,

tab(N), write(tvar), write(':'), nl, write_code(Wbr, Nl),

tab(N), write(Tag), write(':'), nl, write_code(Rbr, Nl),

tab(N), write('else: '), write(Fail), nl,

tab(N), write('}'), nl, write_code(L, N).

write_code(label(Lbl), L, N) :- !, Nl is N-4,

tab(Nl), write(Lbl), write(':'), nl, write_code(L, N).

write_code(Instr, L, N)' :-
tab(N), write(Instr), nl, write_code(L, N).

Source code of the extended DCG preprocessor

%%

% Copyright (C) 1989 Peter Van Roy and Regents of the University of California.

% All rights reserved. This program may be freely used and modified for

% non-commercial purposes provided this copyright notice is kept unchanged.

% Written by Peter Van Roy
%%

%Multiple hidden parameters: an extension to Prolog's DCG notation.

% Version: July 16, 1989

op (1200, xfx,
op (850, xfx,

[I-->>']) •
[I ; I]) •

% Same as ':-'.
%Slightly tighter than',' and'\+'.

% The predicate term_expansion/2 implements the extended translation.

% If loaded into Prolog along with the appropriate acc_info, pass_info,

% and pred_info facts it will be used automatically when consulting programs.

term_expansion((H-->>B), (TH:-FTB))
functor(H, Na, Ar),
'_has_hidden' (H, HList),
'_new_goal' (H, HList, HArity, TH),
'_create_acc_pass' (HList, HArity, TH, Ace, Pass),

'_flat_conj' (B, FB),
'_expand_body' (FB, TB, Na/Ar, HList, Ace, Pass),

'_flat_conj' (TB, FTB), ! .

'_expand_body' (true, true, _, Ace, :- '_finish_acc' (Ace).

'_expand_body' ((G,B), (TG,TB), NaAr, HList, Ace, Pass) ·

'_expand_goal' (G, TG, NaAr, HList, Ace, NewAcc, Pass),

'_expand_body' (B, TB, NaAr, HList, NewAcc, Pass).

% Expand a single goal:
'_expand_goal' ({G), G, _, _, Ace, Ace, _) :- ! .

'_expand_goal' (insert(X,Y), LeftA=X, _, _, Ace, NewAcc, _) ·-

'_replace_acc' (dcg, LeftA, RightA, Y, RightA, Ace, NewAcc), !.

'_expand_goal' (insert(X,Y) :A, LeftA=X, _, _, Ace, NewAcc, _) ·

'_replace_acc' (A, LeftA, RightA, Y, RightA, Ace, NewAcc), ! .

% Force hidden arguments in L to be appended to G:

'_expand_goal' ((G:A), TG, _, HList, Ace, NewAcc, Pass) ·-
\+'_list' (G),
'_has_hidden' (G, []), I . ,
'_make_list' (A, AList),
'_new_goal' (G, AList, GArity, TG),
'_use_acc_pass' (AList, GArity, TG, Ace, NewAcc, Pass).

% Use G's regular hidden arguments & override defaults for those arguments

% not in the head:
'_expand_goal' ((G:A), TG, _, HList, Ace, NewAcc, Pass)

\+'_list' (G),
'_has_hidden' (G, GList), GList \== [], ! ,

'_make_list' (A, L),
'_new_goal' (G, GList, GArity, TG),

-2-

'_replace_defaults' (GList, NGList, L),
'_u~e_acc_pass' (NGList, GArity, TG, Ace, NewAcc, Pass)

'_expand_goal' ((L:A), Joiner, NaAr, , Ace, NewAcc, _)
'_list'(L), !,
'_joiner' (L, A, NaAr, Joiner, Ace, NewAcc).

'_expand_goal' (L, Joiner, NaAr, _, Ace, NewAcc,
'_list' (L), ! ,
'_joiner' (L, dcg, NaAr, Joiner, Ace, NewAcc).

'_expand_goal' ((X/A), true,_,_, Ace, Ace,_) .
var(X), nonvar(A),
'_member' (acc(A,X,_), Ace), ! .

'_expand_goal' ((X/A), true,_,_, Ace,
var(X), nonvar(A),
'_member' (pass (A, X), Pass), ! .

'_expand_goal' ((A/X), true,_,_, Ace,
var(X), nonvar(A),

Ace, Pass)

Ace, _)

'_member'(acc(A,_,X), Ace), !.
'_expand_goal' ((X/A/Y), true,_,_, Ace, Ace,_)

var(X), var(Y), nonvar(A),
'_member' (ace (A, X, Y), Ace), ! .

'_expand_goal' ((X/Y), true, NaAr, _, Ace, Ace,_) ·-
write('*** Warning: in '),write(NaAr),write(' the term '),write(X/Y),
write(' uses a non-existent hidden parameter.'),nl.

% Defaulty cases:
'_expand_goal' (G, TG, HList, _, Ace, NewAcc, Pass) ·

'_has_hidden' (G, GList), !,
'_new_goal' (G, GList, GArity, TG),
'_use_acc_pass' (GList, GArity, TG, Ace, NewAcc, Pass).

%%

% Operations on the Ace and Pass data structures:

% Create the Ace and Pass data structures:
% Ace contains terms of the form acc(A,LeftA,RightA) where A is the name of an
% accumulator, and RightA and LeftA are the accumulating parameters.
%Pass contains terms of the form pass(A,Arg) where A is the name of a passed
% argument, and Arg is the argument.
'_create_acc_pass' ([], _, _, [], []).
'_create_acc_pass' ([AIAList], Index, TGoal, [acc(A,LeftA,RightA) lAce], Pass) ·

, _is_acc' (A), ! ,
Indexl is Index+l,
arg(Indexl, TGoal, LeftA),
Index2 is Index+2,
arg(Index2, TGoal, RightA),
'_create_acc_pass' (AList, Index2, TGoal, Ace, Pass).

'_create_acc_pass' ([AIAList], Index, TGoal, Ace, [pass(A,Arg) !Pass])
'_is_pass' (A), ! ,
Indexl is Index+l,
arg(Indexl, TGoal, Arg),
'_create_acc_pass' (AList, Indexl, TGoal, Ace, Pass).

'_create_acc_pass' ([AIAList], Index, TGoal, Ace, Pass)
\+'_is_acc' (A),
\+' _is_pass' (A),

- 3-

write('*** Error: '),write(A),

write(' is not a hidden parameter.'),nl.

% use the Ace and Pass data structures to create the arguments of a body goal:

% Add the hidden parameters named in GList to the goal.

'_use_acc_pass' ((], _, _, Ace, Ace,_).

% la. The accumulator A is used in the head:

'_use_acc_pass' ([AIGList], Index, TGoal, Ace, NewAcc, Pass) ·

'_replace_acc' (A, LeftA, RightA, MidA, RightA, Ace, MidAcc),

Indexl is Index+l,
arg(Indexl, TGoal, LeftA),

Index2 is Index+2,
arg(Index2, TGoal, MidA),
'_use_acc_pass' (GList, Index2, TGoal, MidAcc, NewAcc, Pass).

% lb. The accumulator A is not used in the head:

'_use_acc_pass' ([AIGList], Index, TGoal, Ace, NewAcc, Pass)

'_acc_info' (A, LStart, RStart), ! ,

Indexl is Index+l,
arg(Indexl, TGoal, LStart),

Index2 is Index+2,
arg(Index2, TGoal, RStart),

'_use_acc_pass' (GList, Index2, TGoal, Ace, NewAcc, Pass).

% 2a. The passed argument A is used in the head:

'_use_acc_pass' ([AIGList], Index, TGoal, Ace, NewAcc, Pass)

'_is_pass' (A),
'_member' (pass (A, Arg), Pass), ! ,

Indexl is Index+l,
arg(Indexl, TGoal, Arg),
'_use_acc_pass' (GList, Indexl, TGoal, Ace, NewAcc, Pass).

% 2b. The passed argument A is not used in the head:

'_use_acc_pass' ([AIGList], Index, TGoal, Ace, NewAcc, Pass) ·-

, _pass_info' (A, AStart), ! ,

Indexl is Index+l,
arg(Indexl, TGoal, AStart),

'_use_acc_pass' (GList, Indexl, TGoal, Ace, NewAcc, Pass).

% 3. Defaulty case when A does not exist:

'_use_acc_pass' ([AIGList], Index, TGoal, Ace, Ace, Pass) ·

write('*** Error: the hidden parameter '),write(A),

write(' does not exist.'),nl.

% Finish the Ace data structure:

% Link its Left and Right accumulation variables together in pairs:

'_finish_acc' ([]).

'_finish_acc' ([ace(_, Link, Link) I Ace]) :- '_finish_ ace' (Ace) .

% Replace elements in the Ace data structure:

% Succeeds iff replacement is successful.

'_replace_acc' (A, Ll, Rl, L2, R2, Ace, NewAcc) ·-

,_member' (ace (A, Ll, Rl), Ace), ! ,

'_replace' (acc(A,_,_), acc(A,L2,R2), Ace, NewAcc).

I . ,

%%

% Specialized utilities:

- 4-

% Given a goal Goal and a list of hidden parameters GList
% create a new goal TGoal with the correct number of arguments.
% Also return the arity of the original goal.
'_new_goal' (Goal, GList, GArity, TGoal) ·-

functor(Goal, Name, GArity),
'_number_args' (GList, GArity, TArity),
functor(TGoal, Name, TArity),
'_match' (1, GArity, Goal, TGoal).

% Add the number of arguments needed for the hidden parameters:
'_number_args' ([], N, N).
'_number_args' ([AIList], N, M) ·-

, _is_acc' (A), ! ,
N2 is N+2,
'_number_args' (List, N2, M).

'_number_args' ([AIList], N, M) ·
, _is_pass' (A), ! ,
Nl is N+1,
'_number_args' (List, Nl, M).

%Give a list of G's hidden parameters:
'_has_hidden' (G, GList) ·-

functor(G, GName, GArity),
pred_info(GName, GArity, GList).

' has_hidden' (G, []) ·-
functor(G, GName, GArity),
\+pred_info(GName, GArity,) .

% Succeeds if A is an accumulator:
'_is_acc' (A) ·- atomic (A), ! , ' acc_info' (A, _, _, _, _, _) .
'_is_acc' (A) :- functor(A, N, 2), !, ' ace info' (N, _, _, _, _, _,

% Succeeds if A is a passed
'_is _pass' (A) ·- atomic (A),
'_is _pass' (A) :- functor (A,

argument:
! , '_pass_info' (A,) .
N, 1), ! , '_pass_info' (N, _) .

% Get initial values for the accumulator:
'_acc_info' (AccParams, LStart, RStart)

functor(AccParams, Ace, 2),
'_is_acc' (Ace), !,
arg(l, AccParams, LStart),
arg(2, AccParams, RStart).

' acc_info' (Ace, LStart, RStart) ·-
'_acc_info' (Ace,_, _, , LStart, RStart).

% Isolate the internal database from the user database:
'_acc_info' (Ace, Term, Left, Right, Joiner, LStart, RStart) ·

acc_info(Acc, Term, Left, Right, Joiner, LStart, RStart).
'_acc_info' (Ace, Term, Left, Right, Joiner,_,_) ·

acc_info(Acc, Term, Left, Right, Joiner).
'_acc_info' (dcg, Term, Left, Right, Left=[TermiRight], _, (]).

% Get initial value for the passed argument:

- 5-

% Also, isolate the internal database from the user database.

'_pass_info' (PassParam, PStart)
functor(PassParam, Pass, 1),
'_is_pass' (Pass), ! ,
arg(l, PassParam, PStart)

'_pass_info' (Pass, PStart) ·
pass_info(Pass, PStart)

'_pass_info' (Pass,_)
pass_info (Pass).

% Calculate the joiner for an accumulator A:

'_joiner'([],_,_, true, Ace, Ace).
' joiner' ([Term I List], A, NaAr, (Joiner, LJoiner), Ace, NewAcc) ·-

- ' replace ace' (A, LeftA, RightA, MidA, RightA, Ace, MidAcc),

,-ace inf~' (A, Term, LeftA, MidA, Joiner,), !,

'=joi~er' (List, A, NaAr, LJoiner, MidAcc, NewAcc).

% Defaulty case:
'_joiner' ([TermiList], A, NaAr, Joiner, Ace, NewAcc)

write('*** Warning: in '),write(NaAr),
write(' the accumulator '),write(A),
write(' does not exist.'),nl,
'_joiner' (List, A, NaAr, Joiner, Ace, NewAcc).

% Replace hidden parameters with ones containing initial values:

'replace_defaults'([], [],).
'_replace_defaults' ([AIGList], [NAINGList], AList) ·

'_replace_default' (A, NA, AList),
'_replace_defaults' (GList, NGList, AList).

'_replace_default' (A, NewA, AList)
functor(NewA, A, 2),
'_member' (NewA, AList), ! .

'_replace_default' (A, NewA, AList)
functor(NewA, A, 1),
'_member' (NewA, AList),

'_replace_default' (A, NewA, _)
A=NewA.

! .

% New initial values for accumulator.

%New initial values for passed argument.

% Use default initial values.

%%

% Generic utilities:

%Match arguments L, L+l, ... , H of the predicates P and Q:
'_match' (L, H, _,) ·- L>H, ! .

'_match' (L, H, P, Q) ·- L-<H, ! ,
arg(L, P, A),
arg (L, Q, A),
Ll is L+l,
'_match' (Ll, H, P, Q) •

% Flatten a conjunction and terminate it with 'true':

'_flat_conj' (Conj, FConj) :- '_flat_conj' (Conj, FConj, true).

'_flat_conj' (true, X, X).

'_flat_conj' ((A, B), Xl, X3) ·-
' _flat_conj' (A, Xl, X2),
'_flat_conj' (B, X2, X3).

' flat_conj' (G, (G, X), X) ·
\+G=true,
\+G={ ,) .

'_member' (X, [X I_]) .

-6-

'_member' (X, [_I L]) ·- '_member' (X, L) .

'_list' (L)
'_list' (L)

nonvar (L), L= [I] , ! .
L=- []' ! .

'_append'([], L, L).
'_append'([XILl], L2, [XIL3]) :- '_append'(Ll, L2, L3).

'_make_list'(A, [A]) ·- \+'_list'(A), !.
'_rnake_list' (L, L) ·- '_list' (L), ! .

% replace(Elem, RepElem, List, RepList)
'_replace'(_, _, [], []).
'_replace'(A, B, [AIL], [BIR]) ·- !,

'_replace' (A, B, L, R).
'_replace' (A, B, [C I L], [C I R]) ·

\+C-A, ! ,
'_replace' (A, B, L, R).

%%

